Connect with us


Everything you need to know about turbochargers



Turbocharger, or turbo as it is commonly referred to, is a common word among automobile enthusiasts. Most Americans have come to associate the word turbo with high automobile speed. Considering the work that’s turbochargers do, it’s an apt association. 

With the recent impact of racing movies like fast and furious and death race, the concept of turbocharging cars is more popular than ever before. A lot of people have taken to improving their cars with turbos from Goldfarb Inc and other similar stores. 

Turbochargers are induction machines that increase the efficiency of the internal combustion in a car’s engine by forcing more air into the combustion chamber. Typical engines require atmospheric pressure to help air suction into the combustion chamber. With Turbochargers, the forced air suction triggers a proportional amount of fuel, the combustion of which makes more power available for the driver. 

Turbochargers are not popular just because they increase the speed of a car; they’re also well-loved because they improve engine fuel efficiency. Turbos are connected in such a way that they take in waste power from a car’s exhaust and use it to compress air before letting it out into the combustion chamber. This ensures that every joule of energy is used up before being passed off as waste. Incidentally, the energy efficiency of turbos also makes them great for reducing emissions from cars.

Car manufacturers also love turbo because it helps them utilize smaller and lighter engines while achieving high energy efficiency. In Europe over 75% of the cars to be produced in 2020 are expected to have turbo engines. The USA is expected to hit similar numbers of turbo engine cars in 5 years from then. 

It is legal to install turbos in most states in the US provided your car stays below the emission limits. Turbochargers can be used in both gasoline and diesel-powered cars. Since they’re more common in diesel engines, they’re also commonplace in trucks. It’s, however in aircraft that they find the most use. They are crucial to the aerodynamics required for flight. 

How Turbochargers work

The exhaust of cars contains hot gases coming out speed. These gases contain heat and kinetic energy that is typically let out into the atmosphere as waste. Turbos  make use of this hot gas to compress the air that it sucks in. They then push this air into the engine cylinders, allowing them to burn more fuel and produce more power. 

That’s the easy explanation. To really understand how a turbo works, you have to take a look at its most essential parts. The parts are typically replaceable and can be substituted to improve performance. Here are the most important parts of a turbine: 

  • Turbine: a turbine is essentially a fan that is placed along the path of the exhaust stream. When the hot exhaust steam flows past it, it rotates the turbine. This rotational speed can go as fast as 250,000 rpm. The motion from the turbine is used to generate motion in the compressor. The characteristics of the turbine, especially the size and number of blades, have a significant effect on the efficiency of a turbocharger. 
  • Compressor: the compressor’s job is to increase air intake into the combustion chamber. It is made up of an impeller (another fan) a diffuser and a volute housing. The impellers blades draw in air as they rotate. This air is transferred to the diffuser where it is compressed and finally sent into the combustion chamber through the volute housing. 
  • Centre Hub Rotating Assembly: it contains the shaft linking the compressor impeller and the turbine to transmit motion from one to the other. 

Types Of Turbochargers 

In a bid to improve efficiency, turbos have come in a few different designs over time. Here are some of the popular ones:

  • Twin-turbo: this design involves placing two Turbochargers side by side either in series or in parallel. In parallel, both the turbine of turbochargers are each fed by half of the exhaust’s effluent. On the other hand, the series configuration requires one turbo usually at a lower velocity feeding into another turbo of a predetermined speed. 
  • Twin scroll turbo: also known as a divided turbo, it typically contains two exhaust gas inlets and two nozzles (pressure outlets). The design can be made to have a smaller, sharper angle that reduces response time or a larger, less angle to increase performance.
  • Variable geometry turbo: this category of turbo uses movable vanes to regulate the airflow into the turbine, therefore, allowing for optimal use. 

Advantages of Turbochargers

  • Increased power: turbos increase the airflow into the combustion chamber. This, in turn, causes a proportional increase in fuel combusted, thereby making more power available per second to the car driver. Using a turbocharger, you get more power output from the engine on every stroke of the piston than without one. 
  • Increased Fuel efficiency: using a turbo with an engine typically results in more fuel consumption per piston stroke. While that is true, it also means that a smaller engine can be paired with a turbocharger to generate similar results as a bigger engine. In practice, a turbocharger can save up to 10% of fuel consumption. 
  • Cleaner emissions: Since the hot gases in the exhaust, it ensures that the fuel is thoroughly burnt. This resulting gas that is passed out is significantly cleaner than from a regular exhaust. 

Disadvantages of Turbochargers

  • Turbochargers add to the complexity of a car’s engine. 
  • Turbochargers result in increased pressure and temperature around a car’s engine, typically resulting in shorter lifespans for engines. 
  • Turbocharged cars can be tricky to drive due to a lag in initiation time. 

Turbochargers vs Superchargers 

Although turbos were initially classified as superchargers, there are stark differences between both types of equipment. They both have a similar function in that they use forced induction to increase the power available in an automobile. 

The main difference between both is how they derive energy. While turbos make use of the heat and kinetic energy from the car’s exhaust, superchargers rely on energy from the car’s crankshaft.

Turbos have the advantage of being able to provide more power, fuel economy and cleaner emissions over superchargers. However, the linear production of power form superchargers makes for a smoother experience when bumping up the speed.

Continue Reading
Click to comment
Notify of
Inline Feedbacks
View all comments


Solid-State Battery Breakthrough Promises to Double EV Range




In a significant leap forward for electric vehicle (EV) technology, researchers at Harvard University have unveiled a new solid-state battery that could potentially double the range of EVs. This breakthrough, which centers on a stable lithium-metal anode and a solid electrolyte, promises not only to enhance the energy density but also to reduce charging times significantly. As the automotive industry continues to push towards a more sustainable future, this development could play a pivotal role in accelerating the adoption of electric vehicles.

The Science Behind the Breakthrough

The new battery design, developed by a team at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), utilizes a lithium-metal anode, which is known for its high energy density. Traditional lithium-ion batteries use a graphite anode, which, while stable, has a lower energy capacity. By replacing the graphite with lithium metal, the researchers have managed to significantly increase the battery’s energy density, potentially doubling the range of EVs.One of the key challenges with lithium-metal anodes has been the formation of dendrites—tiny, needle-like structures that can grow from the anode and pierce the electrolyte, leading to short circuits and battery failure. The Harvard team has addressed this issue by developing a multi-layer, multi-material design that prevents dendrite formation, ensuring the battery’s stability and longevity. According to the researchers, this design allows the battery to retain 80% of its capacity after 6,000 charging cycles, which is equivalent to around 30 years of use in an EV (Harvard SEAS).

Faster Charging Times

In addition to increased energy density, the new solid-state battery also boasts significantly faster charging times. The researchers claim that the battery can be charged in just 10 minutes, compared to the several hours it typically takes to charge a conventional lithium-ion battery. This rapid charging capability is achieved through the use of a solid electrolyte, which allows for faster ion movement compared to the liquid electrolytes used in traditional batteries (CleanTechnica).

Environmental and Economic Impact

The development of this new battery technology could have far-reaching implications for both the environment and the economy. By doubling the range of EVs and reducing charging times, the new battery could make electric vehicles more attractive to consumers, thereby accelerating the transition away from fossil fuel-powered vehicles. This shift is crucial for reducing greenhouse gas emissions and combating climate change.Moreover, the increased energy density and longer lifespan of the new battery could help lower the overall cost of owning an EV. Currently, one of the main barriers to widespread EV adoption is the high upfront cost, largely driven by the expense of the battery. By extending the battery’s lifespan to around 30 years, the researchers hope to improve the resale value of EVs and make them more affordable for a broader range of consumers (The Guardian).

Challenges and Future Prospects

Despite the promising results, there are still several challenges that need to be addressed before the new solid-state battery can be commercialized. One of the main hurdles is scaling up the production process to meet the demands of the automotive industry. Manufacturing solid-state batteries requires high-quality materials in large volumes, and even a small amount of contaminants can render the battery ineffective. Building a robust supply chain for these materials will be crucial for the successful commercialization of the technology (Energy Monitor).Another challenge is ensuring the battery’s performance under real-world conditions. While the laboratory results are promising, the battery will need to undergo extensive testing in actual vehicles to confirm its reliability and safety. This includes ensuring that the battery can withstand the high pressures and temperature variations that occur during normal vehicle operation.

Industry Response

The automotive industry has been closely monitoring developments in solid-state battery technology, and several major players are already investing in this area. Companies like Toyota and Volkswagen have announced significant progress in their own solid-state battery research, with Toyota recently unveiling a prototype that aims to reduce the size, weight, and production costs of EV batteries (Asia Financial).Volkswagen, on the other hand, has successfully tested a solid-state battery that retains 95% of its capacity after more than 1,000 charging cycles. These advancements highlight the industry’s commitment to overcoming the technical and economic challenges associated with solid-state batteries and bringing them to market in the near future.


The breakthrough in solid-state battery technology by Harvard researchers represents a significant step forward in the quest for more efficient and sustainable energy storage solutions. By doubling the range of EVs and reducing charging times, this new battery design has the potential to revolutionize the automotive industry and accelerate the transition to a cleaner, greener future.However, the road to commercialization is fraught with challenges, including scaling up production and ensuring real-world performance. As the industry continues to invest in research and development, the successful deployment of solid-state batteries in electric vehicles could become a reality within the next decade. If these challenges can be overcome, the impact on the environment and the economy could be profound, paving the way for a more sustainable and energy-efficient future.For more information on the solid-state battery breakthrough, you can read the original article on Autoevolution.

Continue Reading


UK Paves the Way for Autonomous Vehicles: A New Era of Transportation by 2026




In a groundbreaking move that signals a significant shift in the automotive landscape, the United Kingdom has passed legislation allowing self-driving cars on its roads by 2026. This landmark decision, which recently received Royal Assent, marks a pivotal moment in the evolution of transportation and positions the UK at the forefront of autonomous vehicle (AV) adoption.The new law, known as the Automated Vehicles Act, sets forth a comprehensive framework for the integration of self-driving technology into the UK’s transportation infrastructure. At its core, the legislation mandates that autonomous vehicles must achieve safety levels comparable to human drivers before they can be deployed on public roads. This stringent requirement underscores the government’s commitment to ensuring public safety while embracing technological innovation.

The Road to Autonomy

The journey towards autonomous vehicles has been long and complex, with roots tracing back to the early 20th century. In 1939, Norman Bel Geddes introduced the concept of a self-driving car at a General Motors exhibit, envisioning vehicles guided by radio-controlled electromagnetic fields. While this idea was ahead of its time, it laid the foundation for the autonomous driving technologies we see emerging today.Fast forward to the present, and the global autonomous vehicle market is experiencing rapid growth and development. Countries around the world are grappling with the regulatory challenges posed by this revolutionary technology. The UK’s new legislation represents a significant step forward in creating a clear legal framework for AVs.

Safety First: The Cornerstone of AV Legislation

Safety is paramount in the UK’s approach to autonomous vehicles. The Automated Vehicles Act stipulates that self-driving cars must demonstrate a level of safety equivalent to or surpassing that of human drivers. This requirement aligns with global efforts to ensure that AVs enhance road safety rather than compromise it.Research from the National Highway Traffic Safety Administration (NHTSA) suggests that autonomous vehicles have the potential to significantly reduce traffic accidents, as human error is a factor in approximately 94% of crashes. By removing the human element from driving, AVs could potentially save thousands of lives annually.

Technological Advancements Driving the AV Revolution

The UK’s decision to green-light autonomous vehicles is underpinned by rapid advancements in AV technology. Key innovations include:

  1. Artificial Intelligence and Machine Learning: These technologies enable vehicles to process vast amounts of data in real-time, making split-second decisions based on complex algorithms.
  2. Sensor Technology: Advanced sensors, including LIDAR, radar, and cameras, provide AVs with a comprehensive view of their surroundings.
  3. Connectivity: Vehicle-to-everything (V2X) communication allows AVs to interact with infrastructure and other vehicles, enhancing safety and efficiency.
  4. High-Definition Mapping: Precise, constantly updated maps are crucial for accurate navigation and positioning of autonomous vehicles.

Global Context: The UK in the International AV Landscape

The UK’s move to legalize autonomous vehicles places it among a select group of countries leading the charge in AV adoption. Other nations, such as the United States, Germany, and China, have also made significant strides in this area.In the United States, regulations vary by state, with some states like California and Arizona already allowing AVs on public roads. Germany, a leader in automotive innovation, has national-level strategies for AVs and permits testing on public roadways. China, another major player in the AV space, has released updated road safety laws covering driverless vehicles on a nationwide scale.

Economic Implications and Industry Impact

The introduction of autonomous vehicles is expected to have far-reaching economic implications. The UK government estimates that the autonomous vehicle industry could create up to 38,000 new jobs and be worth £42 billion to the UK economy by 2035. This potential for economic growth and job creation has been a significant driver behind the government’s push for AV legislation.Major automotive manufacturers and tech companies are investing heavily in AV technology. Companies like Tesla, Waymo, and traditional automakers such as Ford and BMW are all vying for a piece of the autonomous vehicle market. The UK’s new legislation is likely to attract further investment and innovation in this sector.

Challenges and Considerations

While the path to autonomous vehicles is now clearer in the UK, several challenges remain:

  1. Public Acceptance: Gaining public trust in the safety and reliability of AVs will be crucial for widespread adoption.
  2. Infrastructure Adaptation: Existing road infrastructure may need to be updated to accommodate AVs effectively.
  3. Cybersecurity: Ensuring the security of autonomous vehicles against potential hacking or cyber-attacks is a critical concern.
  4. Ethical Considerations: Programmers must grapple with complex ethical decisions in AV algorithms, such as how a vehicle should respond in unavoidable accident scenarios.
  5. Insurance and Liability: New frameworks for insurance and determining liability in accidents involving AVs will need to be developed.

The Road Ahead

As the UK prepares for the arrival of autonomous vehicles on its roads by 2026, the next few years will be crucial in refining regulations, conducting extensive testing, and building public confidence in this transformative technology.The Department for Transport will play a key role in overseeing the implementation of the new legislation and ensuring that safety standards are met. Collaboration between government bodies, industry stakeholders, and research institutions will be essential in addressing the challenges and maximizing the potential benefits of autonomous vehicles.The UK’s bold step towards embracing autonomous vehicles represents more than just a technological advancement; it signifies a fundamental shift in how we perceive transportation and mobility. As the country moves towards this autonomous future, it sets an example for other nations grappling with the complexities of AV regulation.The road to fully autonomous vehicles may still be long, but with this new legislation, the UK has firmly placed itself in the driver’s seat of innovation. As we approach 2026, all eyes will be on the UK’s roads, watching as the future of transportation unfolds before us.


Continue Reading


Rivian and Volkswagen Forge Strategic Partnership to Lead the Future of Vehicle Software Technology




In a groundbreaking move that promises to reshape the landscape of electric vehicle (EV) technology, Rivian Automotive and Volkswagen Group have announced a strategic joint venture aimed at creating industry-leading vehicle software platforms. This collaboration marks a significant milestone in the automotive industry, highlighting the growing importance of advanced software in the development and deployment of next-generation vehicles.

A Strategic Alliance for Technological Advancement

On June 25, 2024, Rivian and Volkswagen Group revealed their plans to enter a joint venture focused on the creation of cutting-edge software-defined vehicle (SDV) platforms. This partnership, as detailed in the official announcement, represents a strategic investment by Volkswagen, underscoring the automotive giant’s commitment to leveraging advanced technology to enhance vehicle performance, safety, and user experience.

The collaboration aims to integrate Rivian’s innovative software capabilities with Volkswagen’s extensive automotive expertise and global reach. This synergistic approach is expected to accelerate the development of sophisticated SDV platforms, which are crucial for the future of autonomous driving and connected vehicle ecosystems.

The Role of Software in Modern Automotive Innovation

The automotive industry is undergoing a paradigm shift, with software playing an increasingly pivotal role in vehicle design and functionality. Modern vehicles are no longer just mechanical entities; they are sophisticated digital devices on wheels. The integration of advanced software systems enables features such as over-the-air updates, real-time diagnostics, enhanced infotainment options, and, crucially, autonomous driving capabilities.

Rivian, known for its pioneering work in electric trucks and SUVs, brings to the table its robust software architecture that supports a wide range of vehicle functions. The company’s focus on user-centric software solutions aligns perfectly with Volkswagen’s vision of a future where software is a core component of automotive innovation.

According to McKinsey & Company, the future of the automotive industry is heavily dependent on the development of advanced software systems. The joint venture between Rivian and Volkswagen is poised to lead this transformation, setting new standards for the industry.

Strategic Investment and Shared Goals

Volkswagen’s investment in this joint venture is not just financial but also strategic. By combining forces with Rivian, Volkswagen aims to enhance its software development capabilities, ensuring that its future vehicles are equipped with the most advanced technologies available. This partnership is expected to yield significant advancements in several key areas:

  1. Autonomous Driving: The development of reliable and safe autonomous driving systems is a primary focus. The integration of Rivian’s software expertise with Volkswagen’s extensive vehicle testing and validation processes will accelerate the path to fully autonomous vehicles.
  2. Connected Vehicle Ecosystems: Creating a seamless and interconnected vehicle ecosystem is essential for the future of transportation. The joint venture will work on developing platforms that enable vehicles to communicate with each other and with infrastructure, enhancing safety and efficiency.
  3. User Experience: Enhancing the user experience through intuitive interfaces, personalized settings, and advanced infotainment options is a major goal. The collaboration aims to create a software platform that provides a superior user experience, making driving more enjoyable and convenient.

Industry Implications and Future Prospects

The automotive industry is witnessing a wave of partnerships and collaborations as companies recognize the need for joint efforts to tackle the complex challenges of modern vehicle development. The partnership between Rivian and Volkswagen is a testament to this trend, highlighting the importance of strategic alliances in driving innovation.

According to Gartner, the future of the automotive industry is shaped by connected, autonomous, shared, and electric (CASE) technologies. The joint venture between Rivian and Volkswagen aligns with this vision, promising to deliver solutions that address the evolving needs of the market.

Moreover, this collaboration is expected to have a ripple effect across the industry. Other automotive manufacturers are likely to take note of this strategic move and may seek similar partnerships to bolster their technological capabilities. The emphasis on software development is set to redefine competitive dynamics in the automotive sector, with companies that can successfully integrate advanced software solutions gaining a significant edge.


The joint venture between Rivian and Volkswagen represents a bold step towards the future of the automotive industry. By combining their strengths, the two companies are poised to lead the way in developing advanced vehicle software platforms that will drive the next generation of automotive innovation. This partnership underscores the critical role of software in modern vehicle development and sets the stage for exciting advancements in autonomous driving, connected ecosystems, and user experience.

As the industry continues to evolve, strategic collaborations like this will be essential in navigating the complexities of technological innovation. The Rivian-Volkswagen partnership is a clear indication that the future of the automotive industry lies in the seamless integration of software and hardware, paving the way for a new era of smart, connected, and autonomous vehicles.

For more information on this transformative partnership, you can read the full announcement.

Continue Reading