Connect with us

Medical

IVF gets Better with AI

Published

on

An Israeli startup has found a way to make fertility treatments more successful using Artificial Intelligence.

Embryonics has already seen no less than 6 full term pregnancies as a result of their novel system.

Doctors will often inseminate a female egg in a laboratory – a process known as In Vitro Fertilization. During first few days after the fertilization, the embryos will be housed in special incubators and watched continuously by an embryologist.

This embryologist will then return some of the embryos for in-human incubation. This is where it gets interesting because they have to choose what they feel are the most valuable embryos.

“The decision making is subjective, and is dependent on experience and intuition – a factor that changes between doctors and medical centers. Embryonics wide range of smart solutions simplifies complex processes with data-backed insight, aiming at optimizing quality and fertilizations rate success,” says Embryonics founder and CEO Yael Gold-Zamir.

The company says that the success rate of traditional methods of IVF carries a 30% success rate within the US, and that the success rate is even lower outside the US.

The company developed AI algorithms that help predict the likely success rate of fertility and IVF treatments. This takes a lot of the guesswork out of the selection process.

To train the model, scientists watched embryos developing during IVF treatment. As a result, the embryo-pregnancy success rate shot up by 20% and the model allowed doctors to predict the embryos that would not yield a successful pregnancy.

This difference is significant because it saves IVF patients a significant amount of money by making the process more efficient. By increasing the chances of success, it also saves patients from the emotional toll of unsuccessful IVF attempts.

Test Tube Babies become AI Babies

According to Dr. Gold-Zamir, Embryonics has come up with Ubar, the first commercially viable product that more accurately pinpoints healthy embryos.

It won’t be long before Embryonics’ product is in the market: The product could be CE cleared in a matter of weeks, and FDA approved within the year.

“Once regulatory approvals are in, we will start implementing the product in a number of Israeli medical centers that showed interest.”

“It’s a revolution. Traditional fertility treatments resulted in very low success rate. We are going to replace IVF test-tube babies with AI babies – a transition that will create a process that is shorter, cheaper, and less dangerous for millions of couples around the world.” Adds Zamir.

If we go by the findings of Israeli startups like Embryonics, AIDOC, and Zebra, you may be forgiven for thinking that AI medical imaging analysis may replace specialist like radiologists and embryologists in the near future.

But Dr. Gold-Zamir differs: “Algorithms will take over some of the radiologist’s tasks, opening more time for physicians to take a deeper dice into patient care. But that’s further down the road. Currently, all the available tools aid and improve radiologist and doctors’ workflow and quality, with tools trained in millions of different sample sources – a database too large for humans to process.”

The effect of Artificial Intelligence it appears, will be to make medical experts more accurate in their diagnoses, and not to replace them.

Dr. Yael Gold-Zamir founded Embryonics in 2018 and the company has grown to its current composition of 16 people. Embryonics has raised a $4million round of funding with the Schuctermann Family Investment Office as well as the Israel Innovation Authority.

Continue Reading

Health & Fitness

The Dawn of AI-Enhanced Rehabilitation: How AI-Powered Trousers are Revolutionizing Stroke Recovery

Published

on

By

In the quaint town of Penarth, Vale of Glamorgan, a remarkable story of resilience and technological innovation is unfolding. Julie Lloyd, a 65-year-old stroke survivor, is relearning to walk, aided by a groundbreaking piece of technology: trousers powered by artificial intelligence (AI). This pioneering trial in the UK marks a significant leap in medical technology, offering new hope to stroke victims worldwide.

The Breakthrough in Stroke Rehabilitation

Julie’s journey is not just a personal triumph but a beacon of hope for millions affected by strokes. According to the World Health Organization, strokes are the second leading cause of death globally, and the leading cause of acquired disability among adults. The road to recovery is often long and arduous, with traditional rehabilitation methods providing varying degrees of success.

The AI-powered trousers represent a paradigm shift in rehabilitation technology. As Julie puts it, “I really feel this is the breakthrough for stroke victims that has been much and long awaited for.” This sentiment echoes the sentiments of many in the medical community who have long sought more effective ways to aid stroke recovery.

How the Technology Works

The AI trousers are a marvel of modern engineering and medical science. They function by using a series of sensors and motors that work in tandem with the wearer’s movements. This technology is not just about physical support; it’s about enhancing the body’s natural ability to relearn movements. The AI component analyses the wearer’s gait, providing real-time adjustments to improve walking patterns, much like a physical therapist would.

This approach is grounded in the concept of neuroplasticity, the brain’s ability to reorganize itself by forming new neural connections. By assisting in the correct movement patterns, the trousers help the brain to ‘relearn’ walking, potentially speeding up the recovery process.

The Impact on Stroke Rehabilitation

The implications of this technology are vast. For stroke survivors, the journey to recovery can be filled with frustration and despair. Traditional rehabilitation methods can be slow and, at times, ineffective. The AI trousers offer a more dynamic and responsive form of therapy that could revolutionize how we approach stroke rehabilitation.

In a study conducted by the American Stroke Association, it was found that early and individualized rehabilitation can significantly improve outcomes for stroke survivors. The AI trousers align perfectly with this philosophy, offering a tailored rehabilitation experience that adapts to the individual’s needs.

Challenges and Future Prospects

Despite the promise, the road ahead for AI in medical rehabilitation is not without challenges. Cost and accessibility are significant concerns. Cutting-edge technology often comes with a high price tag, potentially putting it out of reach for many who could benefit from it.

Moreover, there’s the challenge of integrating such technology into existing healthcare systems. As noted by experts in healthcare technology, the adoption of new medical technologies often faces hurdles in terms of regulatory approval, practitioner training, and patient acceptance.

However, the future looks bright. As AI and robotics continue to advance, we can expect these technologies to become more affordable and widespread. The potential for AI to aid in various aspects of healthcare, from diagnosis to treatment and rehabilitation, is enormous.

Conclusion

Julie Lloyd’s story is just the beginning. As we stand on the cusp of a new era in medical technology, the possibilities are endless. The AI-powered trousers are more than just a piece of technology; they are a symbol of hope and a testament to human ingenuity. For stroke survivors around the world, this could be the dawn of a new day in rehabilitation, one where technology and human resilience come together to create new possibilities.

Continue Reading

Medical

AI-Powered Medical Database Aims to Revolutionize Doctor-Patient Interactions

Published

on

By

Artificial Intelligence (AI) is making inroads into various sectors, and healthcare is no exception. According to a recent NPR article, Dr. Michael Mansour of Massachusetts General Hospital is among the early adopters testing an AI-enhanced version of UpToDate, a widely-used medical database. This experimental version employs generative AI to provide doctors with more targeted information, aiming to streamline the diagnostic process.

Wolters Kluwer Health, the company behind UpToDate, is working on making the database more conversational, allowing doctors to maintain the context of their queries. While the technology is still in beta and has some kinks to work out, the potential is enormous. AI could not only assist in making accurate diagnoses but also free up doctors’ time, allowing them to focus more on patient care. As Dr. Marc Succi of Mass General Brigham aptly puts it, “AI won’t replace doctors, but doctors who use AI will replace doctors who do not.”

Continue Reading

Medical

A New way around Drug Resistant Tuberculosis

Published

on

By

Researchers at Purdue University have created a powerful compound that specifically tackles Tuberculosis, a leading killer worldwide.

The scientists came up with a series of inhibitors that destroy TB by targeting a protein necessary for the survival of the TB molecule.

Tuberculosis destabilizes the immunity of patients with the help of Protein Tyrosine Phosphates B (mPTPB). Their findings were published in the Journal of Medicinal Chemistry.

“The death toll from TB is particularly high because of drug-resistant strains,” said Zhong-Yin Zhang, distinguished professor and head of Purdue’s Department of Medicinal Chemistry and Molecular Pharmacology and director of Purdue Institute for Drug Discovery. “These inhibitors are part of a promising new approach to developing TB therapeutic agents with novel targets and mechanisms of action to help save more lives.”

Right now, doctors rely on antibiotic preparations to treat Tuberculosis. The problem is that many patients don’t complete their dose of antibiotics and this non-adherence leads to the development of drug resistant tuberculosis.

“We developed a platform to target mPTPB for novel anti-TB agents that builds on technologies we pioneered to modulate abnormal protein tyrosine phosphatase activity for the treatment of diseases such as cancer, diabetes and autoimmune disorders,” Zhang elaborated.

According to Zhang, the inhibitors’ have unique properties that make them incredibly useful. They have a lighter molecular weight and superior metabolic stability. They give scientists an excellent opportunity to create better treatments for Tuberculosis.

The visionary scientists are already working to patent the exciting new technology. The hunt is on for partners who will work with Purdue to further the development of the new technology. This is together with the Purdue Research Foundation Office of Technology Commercialization.

Continue Reading

Trending