Connect with us

Medical

Four-Week Memory Test that could predict the Risk of Alzheimer’s

Published

on

Scientists now believe that it may be possible to identify people who have a greater risk of developing Alzheimer’s disease by testing their memory over a four-week period.

Trials have shown that zeroing in on the ability to retain a memory over a longer period could yield potentially more accurate predictors than the traditional memory tests. Traditional memory tests assess people’s memory over a period of half an hour.

University of Bristol researchers led the study which they published in the Alzheimer’s Research and Therapy journal in which they wanted to test using a word list to test people’s memory over four weeks. People were tested for their memory of the list four weeks after hearing it initially.

Those whose memory of the list after four weeks was better off, registered less cognitive decline over the year after. This was true even for those who did not have any problems with cognitive function or memory at the start.

Forty six older people participated in the study. All of them were healthy and their average age was 70.7. The study participants had to perform three memory tasks. Researchers tested t heir delayed recall 30 minutes later and then four weeks later.

They also did the Addenbrooke’s Cognitive Examination III or ACE-III test. ACE-III test is conventionally used to detect cognitive impairments, as well as a brain MRI. One year later, the participants repeated the same ACE-III test to measure their cognitive abilities.

At the end of the study, researchers found that 15 out of 46 participants had experienced a decline in their cognitive abilities, and that the verbal memory tests conducted over the initial period of four weeks would have yielded a better prediction of this decline than the standard memory tests.

After combining the scores from the four-week memory tests together with the results of the MRI brain scan, the researchers found that it was possible to make even more accurate prediction s of cognitive decline.

The MRI brain scans showed that there was a size reduction in the section of the brain that governs memory. This is the part of the brain that gets affected by Alzheimer’s Disease.

By testing long-term memory recall, the researchers found that they could detect Alzheimer’s disease much earlier and achieve better treatment outcomes. Treatments to stop Alzheimer’s disease or slow down its progression are much more effective when given during the early stages of the disease. This is the best time because patients are yet to develop significant problems with their memory.

In the words of Dr. Alfie Wearn, a Research Associate at the Bristol Medical School: Translational Health Sciences: “Our study shows evidence for a low-cost and quick to administer screening tool that could be used to identify the very earliest signs of Alzheimer’s disease. It could also directly speed up the development of effective Alzheimer’s disease therapies, and enable earlier treatment when such therapies are available.”

Dr. Liz Coulthard who is an Associate Professor in Dementia Neurology with the University of Bristol as well as a neurologist with the North Bristol NHS Trust also said this: “It is important to note the participants were healthy older people who did not develop Alzheimer’s during the trial, but some people did show the type of change over the course of a year in memory and thinking that can precede Alzheimer’s disease. Future work will establish whether this test predicts full-blown Alzheimer’s dementia.”

Researchers will now be testing the ability of these tests to detect Alzheimer’s disease in comparison with other cognitive deteriorating diseases. The researchers will be drawing comparisons between long-term memory test results of people who have evidence of Alzheimer’s disease and those without. The evidence is derived from analyzing their cerebrospinal fluid. Even though this method of detecting Alzheimer’s is the most effective, it is also too invasive, and researchers are working on less invasive methods.

The study was conducted with funding from a Wellcome Trust PhD study scholarship award received by Dr. Wearn who is in the Neural Dynamics PhD Programme. It was also funded by the Alzheimer’s Research UK as well as Brace, which is a dementia charity at Southmead Hospital in Bristol.

Continue Reading

Health & Fitness

The Dawn of AI-Enhanced Rehabilitation: How AI-Powered Trousers are Revolutionizing Stroke Recovery

Published

on

By

In the quaint town of Penarth, Vale of Glamorgan, a remarkable story of resilience and technological innovation is unfolding. Julie Lloyd, a 65-year-old stroke survivor, is relearning to walk, aided by a groundbreaking piece of technology: trousers powered by artificial intelligence (AI). This pioneering trial in the UK marks a significant leap in medical technology, offering new hope to stroke victims worldwide.

The Breakthrough in Stroke Rehabilitation

Julie’s journey is not just a personal triumph but a beacon of hope for millions affected by strokes. According to the World Health Organization, strokes are the second leading cause of death globally, and the leading cause of acquired disability among adults. The road to recovery is often long and arduous, with traditional rehabilitation methods providing varying degrees of success.

The AI-powered trousers represent a paradigm shift in rehabilitation technology. As Julie puts it, “I really feel this is the breakthrough for stroke victims that has been much and long awaited for.” This sentiment echoes the sentiments of many in the medical community who have long sought more effective ways to aid stroke recovery.

How the Technology Works

The AI trousers are a marvel of modern engineering and medical science. They function by using a series of sensors and motors that work in tandem with the wearer’s movements. This technology is not just about physical support; it’s about enhancing the body’s natural ability to relearn movements. The AI component analyses the wearer’s gait, providing real-time adjustments to improve walking patterns, much like a physical therapist would.

This approach is grounded in the concept of neuroplasticity, the brain’s ability to reorganize itself by forming new neural connections. By assisting in the correct movement patterns, the trousers help the brain to ‘relearn’ walking, potentially speeding up the recovery process.

The Impact on Stroke Rehabilitation

The implications of this technology are vast. For stroke survivors, the journey to recovery can be filled with frustration and despair. Traditional rehabilitation methods can be slow and, at times, ineffective. The AI trousers offer a more dynamic and responsive form of therapy that could revolutionize how we approach stroke rehabilitation.

In a study conducted by the American Stroke Association, it was found that early and individualized rehabilitation can significantly improve outcomes for stroke survivors. The AI trousers align perfectly with this philosophy, offering a tailored rehabilitation experience that adapts to the individual’s needs.

Challenges and Future Prospects

Despite the promise, the road ahead for AI in medical rehabilitation is not without challenges. Cost and accessibility are significant concerns. Cutting-edge technology often comes with a high price tag, potentially putting it out of reach for many who could benefit from it.

Moreover, there’s the challenge of integrating such technology into existing healthcare systems. As noted by experts in healthcare technology, the adoption of new medical technologies often faces hurdles in terms of regulatory approval, practitioner training, and patient acceptance.

However, the future looks bright. As AI and robotics continue to advance, we can expect these technologies to become more affordable and widespread. The potential for AI to aid in various aspects of healthcare, from diagnosis to treatment and rehabilitation, is enormous.

Conclusion

Julie Lloyd’s story is just the beginning. As we stand on the cusp of a new era in medical technology, the possibilities are endless. The AI-powered trousers are more than just a piece of technology; they are a symbol of hope and a testament to human ingenuity. For stroke survivors around the world, this could be the dawn of a new day in rehabilitation, one where technology and human resilience come together to create new possibilities.

Continue Reading

Medical

AI-Powered Medical Database Aims to Revolutionize Doctor-Patient Interactions

Published

on

By

Artificial Intelligence (AI) is making inroads into various sectors, and healthcare is no exception. According to a recent NPR article, Dr. Michael Mansour of Massachusetts General Hospital is among the early adopters testing an AI-enhanced version of UpToDate, a widely-used medical database. This experimental version employs generative AI to provide doctors with more targeted information, aiming to streamline the diagnostic process.

Wolters Kluwer Health, the company behind UpToDate, is working on making the database more conversational, allowing doctors to maintain the context of their queries. While the technology is still in beta and has some kinks to work out, the potential is enormous. AI could not only assist in making accurate diagnoses but also free up doctors’ time, allowing them to focus more on patient care. As Dr. Marc Succi of Mass General Brigham aptly puts it, “AI won’t replace doctors, but doctors who use AI will replace doctors who do not.”

Continue Reading

Medical

A New way around Drug Resistant Tuberculosis

Published

on

By

Researchers at Purdue University have created a powerful compound that specifically tackles Tuberculosis, a leading killer worldwide.

The scientists came up with a series of inhibitors that destroy TB by targeting a protein necessary for the survival of the TB molecule.

Tuberculosis destabilizes the immunity of patients with the help of Protein Tyrosine Phosphates B (mPTPB). Their findings were published in the Journal of Medicinal Chemistry.

“The death toll from TB is particularly high because of drug-resistant strains,” said Zhong-Yin Zhang, distinguished professor and head of Purdue’s Department of Medicinal Chemistry and Molecular Pharmacology and director of Purdue Institute for Drug Discovery. “These inhibitors are part of a promising new approach to developing TB therapeutic agents with novel targets and mechanisms of action to help save more lives.”

Right now, doctors rely on antibiotic preparations to treat Tuberculosis. The problem is that many patients don’t complete their dose of antibiotics and this non-adherence leads to the development of drug resistant tuberculosis.

“We developed a platform to target mPTPB for novel anti-TB agents that builds on technologies we pioneered to modulate abnormal protein tyrosine phosphatase activity for the treatment of diseases such as cancer, diabetes and autoimmune disorders,” Zhang elaborated.

According to Zhang, the inhibitors’ have unique properties that make them incredibly useful. They have a lighter molecular weight and superior metabolic stability. They give scientists an excellent opportunity to create better treatments for Tuberculosis.

The visionary scientists are already working to patent the exciting new technology. The hunt is on for partners who will work with Purdue to further the development of the new technology. This is together with the Purdue Research Foundation Office of Technology Commercialization.

Continue Reading

Trending