Connect with us

Medical

Nanodiamonds enhance paper-based diagnostic testing

Published

on

A study conducted by the University College London has shown that we can detect viruses earlier by exploiting nanodiamonds’ quantum properties to make paper-based diagnostic testing more sensitive.

The innovation could pave the way for viruses like SARS-CoV-2 and HIV to be detected earlier.

Paper-based diagnostic testing works the same way pregnancy tests work, by soaking a strip of paper in a liquid and waiting for a fluorescent signal or a color transformation to denote positive results, or the presence of virus proteins.

England is already piloting lateral flow testing for Covid-19 which deliver immediate results as they do not require laboratory processing. Lateral flow testing is popular for detecting viruses like HIV.

HIV tests lateral flow tests utilize gold nanoparticles which are not as sensitive as nanodiamonds which are capable of detecting much lower viral loads than gold nanoparticles. If this is widely accepted, it will become possible to detect viruses much earlier and reduce the risk of transmission.

“Our proof-of-concept study shows how quantum technologies can be used to detect ultralow levels of virus in a patient sample, enabling much earlier diagnosis,” explained Professor Rachel McKendry, lead author of the Nature study. “We have focused on the detection of HIV, but our approach is very flexible and can be easily adapted to other diseases and biomarker types.

“We are working on adapting our approach to Covid-19. We believe that this transformative new technology will benefit patients and protect populations from infectious diseases.”

The study leveraged the quantum properties of nanodiamonds that carried a defect which creates a nitrogen-vacancy center (NV). These NV centers can be used for fluorescent biomarking which enables ultrasensitive imaging, quantum computing, information processing, and other applications.

The NV centers emit fluorescent lights which indicate the presence of target molecules. Nano diamonds’ quantum properties allow this signal to be set to its own unique frequency that separates it from background fluorescence.

What the UCL research has shown is that it is possible to improve the sensitivity of a HIV test by 100,000 times. A 10-minte temperature amplification which multiplies HIV RNA copies made it possible to detect HIV in a single molecule within the sample.

“Paper-based lateral flow tests with gold nanoparticles do not require laboratory analysis, making them particularly useful in low-resource settings and where access to healthcare is limited. They are low cost, portable, and user friendly” said lead author Dr. Ben Miller.

He added: “However, these tests currently lack the sensitivity to detect very low levels of biomarkers. By replacing commonly used gold nanoparticles with fluorescent nanodiamonds in this new design, and selectively modulating their (already bright) emission of light, we have been able to separate their signal from the unwanted background fluorescence of the test strip, dramatically improving sensitivity.”

The researchers have now moved on to trying to adjust the same technology to develop a rapid testing for other diseases, including Covid-19. If they can create a hand-held testing device allowing the technique to work even in poorly resourced locations, the innovation will be ready to scale.

Continue Reading

Health & Fitness

The Dawn of AI-Enhanced Rehabilitation: How AI-Powered Trousers are Revolutionizing Stroke Recovery

Published

on

By

In the quaint town of Penarth, Vale of Glamorgan, a remarkable story of resilience and technological innovation is unfolding. Julie Lloyd, a 65-year-old stroke survivor, is relearning to walk, aided by a groundbreaking piece of technology: trousers powered by artificial intelligence (AI). This pioneering trial in the UK marks a significant leap in medical technology, offering new hope to stroke victims worldwide.

The Breakthrough in Stroke Rehabilitation

Julie’s journey is not just a personal triumph but a beacon of hope for millions affected by strokes. According to the World Health Organization, strokes are the second leading cause of death globally, and the leading cause of acquired disability among adults. The road to recovery is often long and arduous, with traditional rehabilitation methods providing varying degrees of success.

The AI-powered trousers represent a paradigm shift in rehabilitation technology. As Julie puts it, “I really feel this is the breakthrough for stroke victims that has been much and long awaited for.” This sentiment echoes the sentiments of many in the medical community who have long sought more effective ways to aid stroke recovery.

How the Technology Works

The AI trousers are a marvel of modern engineering and medical science. They function by using a series of sensors and motors that work in tandem with the wearer’s movements. This technology is not just about physical support; it’s about enhancing the body’s natural ability to relearn movements. The AI component analyses the wearer’s gait, providing real-time adjustments to improve walking patterns, much like a physical therapist would.

This approach is grounded in the concept of neuroplasticity, the brain’s ability to reorganize itself by forming new neural connections. By assisting in the correct movement patterns, the trousers help the brain to ‘relearn’ walking, potentially speeding up the recovery process.

The Impact on Stroke Rehabilitation

The implications of this technology are vast. For stroke survivors, the journey to recovery can be filled with frustration and despair. Traditional rehabilitation methods can be slow and, at times, ineffective. The AI trousers offer a more dynamic and responsive form of therapy that could revolutionize how we approach stroke rehabilitation.

In a study conducted by the American Stroke Association, it was found that early and individualized rehabilitation can significantly improve outcomes for stroke survivors. The AI trousers align perfectly with this philosophy, offering a tailored rehabilitation experience that adapts to the individual’s needs.

Challenges and Future Prospects

Despite the promise, the road ahead for AI in medical rehabilitation is not without challenges. Cost and accessibility are significant concerns. Cutting-edge technology often comes with a high price tag, potentially putting it out of reach for many who could benefit from it.

Moreover, there’s the challenge of integrating such technology into existing healthcare systems. As noted by experts in healthcare technology, the adoption of new medical technologies often faces hurdles in terms of regulatory approval, practitioner training, and patient acceptance.

However, the future looks bright. As AI and robotics continue to advance, we can expect these technologies to become more affordable and widespread. The potential for AI to aid in various aspects of healthcare, from diagnosis to treatment and rehabilitation, is enormous.

Conclusion

Julie Lloyd’s story is just the beginning. As we stand on the cusp of a new era in medical technology, the possibilities are endless. The AI-powered trousers are more than just a piece of technology; they are a symbol of hope and a testament to human ingenuity. For stroke survivors around the world, this could be the dawn of a new day in rehabilitation, one where technology and human resilience come together to create new possibilities.

Continue Reading

Medical

AI-Powered Medical Database Aims to Revolutionize Doctor-Patient Interactions

Published

on

By

Artificial Intelligence (AI) is making inroads into various sectors, and healthcare is no exception. According to a recent NPR article, Dr. Michael Mansour of Massachusetts General Hospital is among the early adopters testing an AI-enhanced version of UpToDate, a widely-used medical database. This experimental version employs generative AI to provide doctors with more targeted information, aiming to streamline the diagnostic process.

Wolters Kluwer Health, the company behind UpToDate, is working on making the database more conversational, allowing doctors to maintain the context of their queries. While the technology is still in beta and has some kinks to work out, the potential is enormous. AI could not only assist in making accurate diagnoses but also free up doctors’ time, allowing them to focus more on patient care. As Dr. Marc Succi of Mass General Brigham aptly puts it, “AI won’t replace doctors, but doctors who use AI will replace doctors who do not.”

Continue Reading

Medical

A New way around Drug Resistant Tuberculosis

Published

on

By

Researchers at Purdue University have created a powerful compound that specifically tackles Tuberculosis, a leading killer worldwide.

The scientists came up with a series of inhibitors that destroy TB by targeting a protein necessary for the survival of the TB molecule.

Tuberculosis destabilizes the immunity of patients with the help of Protein Tyrosine Phosphates B (mPTPB). Their findings were published in the Journal of Medicinal Chemistry.

“The death toll from TB is particularly high because of drug-resistant strains,” said Zhong-Yin Zhang, distinguished professor and head of Purdue’s Department of Medicinal Chemistry and Molecular Pharmacology and director of Purdue Institute for Drug Discovery. “These inhibitors are part of a promising new approach to developing TB therapeutic agents with novel targets and mechanisms of action to help save more lives.”

Right now, doctors rely on antibiotic preparations to treat Tuberculosis. The problem is that many patients don’t complete their dose of antibiotics and this non-adherence leads to the development of drug resistant tuberculosis.

“We developed a platform to target mPTPB for novel anti-TB agents that builds on technologies we pioneered to modulate abnormal protein tyrosine phosphatase activity for the treatment of diseases such as cancer, diabetes and autoimmune disorders,” Zhang elaborated.

According to Zhang, the inhibitors’ have unique properties that make them incredibly useful. They have a lighter molecular weight and superior metabolic stability. They give scientists an excellent opportunity to create better treatments for Tuberculosis.

The visionary scientists are already working to patent the exciting new technology. The hunt is on for partners who will work with Purdue to further the development of the new technology. This is together with the Purdue Research Foundation Office of Technology Commercialization.

Continue Reading

Trending