Researchers working in Sweden have created a microcomb capable of detecting diseases faster and making optical communications systems more efficient, among other exciting applications.
The scientists at the Chalmers University of Technology in Sweden have built the photonic device (microcomb) with the capability to produce optical frequencies on a micro resonator – a minute optical cavity.
Effectively, the microcomb is like a ruler of light that measures frequencies with extreme accuracy.
The microcomb generates an array of optical frequencies whose colors are evenly distributed, making it more or less a ruler of light that measures and produces frequencies with extreme accuracy.
The researchers used a chip to develop a new microcomb based on two micro resonators instead of one. The interaction between the two micro resonators is similar to atoms that bind together to create a diatomic molecule known as a photonic molecule.
The microcomb is a device that is readable and capable of being tuned as well as being replicated into something multiple times more efficient than the best devices available at the moment.
The results are extremely significant. “The reason why the results are important is that they represent a unique combination of characteristics, in terms of efficiency, low-power operation and control, that are unprecedented in the field,” explained PhD candidate Óskar Bjarki Helgason.
This is by no means the first time that scientists have created a microcomb on a chip, but it is definitely the first time that scientists have deployed a second micro resonator to beat many of the limitations that have never been surmounted before.
The arrangement has created a number of unique characteristics. The microcomb is so small that it can sit on the tip of a human hair and leaves relatively wide gaps between its teeth.
These wide teeth mean that engineers and researchers have massive opportunities to explore the possibilities.
The microcomb is capable of making optical communication systems vastly more efficient by replacing many lasers with a single microcomb placed in data centers.
The microcombs have great potential for use in lidar to power self-driving vehicles where they can be deployed to record distances, or to calibrate spectrographs deployed in astronomical observations.
Microcombs are also ideal for making optical clocks more accurate as well as improving health monitoring apps in mobile phones, and increasing the accuracy of diagnostic tests that rely on analyzing exhaled air.
“For the technology to be practical and find its use outside the lab, we need to co-integrate additional elements with the micro resonators, such as lasers, modulators, and control electronics,” explained Dr Victor Torres-Company, who is in charge of the Ultrafast Photonics Laboratory at Chalmers University. “This is a huge challenge, that requires maybe five to 10 years and an investment in engineering research, but I am convinced that it will happen.
“The most interesting advances and applications are the ones that we have not even conceived of yet. This will likely be enabled by the possibility of having multiple microcombs on the same chip. What could we achieve with tens of microcombs that we cannot do with one?”