Connect with us

Medical

Nurami Medical lands $6M making regenerative bandages for post-surgery recovery

Published

on

The Israeli MedTech company develops post-surgical application-tailored synthetic graft solutions to help protect the brain and accelerate patient recovery time…

Israeli MedTech startup Nurami Medical, which develops post-surgical soft-tissue healing solutions, announced a $6 million Series B funding round. The investment was led by Almeda Ventures, with participation from Leon Recanati’s private equity investment company, GlenRock.

Targeting FDA and CE approval

Nurami Medical‘s technology is based on biodegradable, synthetic nanofibers with sealing properties for improved soft tissue healing. The company has set out to revolutionize the regenerative medicine industry by providing both patients and physicians an effective application-tailored patch or surgical sealant solution. According to the company, in addition to its initial product offering – ArtiFascia – it is also lining up future projects for tissue regeneration solutions, which Nurami notes are part of a $20 billion market.

Regarding the ongoing clinical trials, co-founder Dr. Amir Bahar, a multidisciplinary entrepreneur and Nurami’s Clinical Director and Operations Manager said, “ArtiFascia’s clinical trial is being carried out at a number of European medical centers. This is a controlled, blind study, and as of yet, no adverse reactions have been documented.”

ArtiFascia is a patented, synthetic dural graft that protects the brain after neurosurgeries by boosting dura regeneration, while preventing cerebral-spinal fluid (CSF) leakage, to protect both the brain itself and central nervous system.

Nora Nseir Manassa, co-founder, co-CEO and CTO at Nurami adds, “Nurami is involved in ongoing efforts for the development of additional solutions for soft tissue repair and healing, for additional clinical indications, based on our technological platform which incorporates novel materials and unique manufacturing processes.”

Nurami Medical was founded in 2014 by uber-talented co-CEO and CTO Nora Nseir Manassa, COO Dr. Amir Bahar, and NGT3VC, a venture capital fund supporting early-stage life science startups. Previously, the company had raised $5 million from a number of Angel investors and the Israel Innovation Authority. The company relayed that the funding will be set towards completing clinical trials on ArtiFascia, and attaining both FDA and CE clearance. The clinical trial will test ArtiFascia in 90 patients, of which 13 have already been implanted with the ArtiFascia graft.

Continue Reading
Click to comment
Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments

Health & Fitness

The Dawn of AI-Enhanced Rehabilitation: How AI-Powered Trousers are Revolutionizing Stroke Recovery

Published

on

By

In the quaint town of Penarth, Vale of Glamorgan, a remarkable story of resilience and technological innovation is unfolding. Julie Lloyd, a 65-year-old stroke survivor, is relearning to walk, aided by a groundbreaking piece of technology: trousers powered by artificial intelligence (AI). This pioneering trial in the UK marks a significant leap in medical technology, offering new hope to stroke victims worldwide.

The Breakthrough in Stroke Rehabilitation

Julie’s journey is not just a personal triumph but a beacon of hope for millions affected by strokes. According to the World Health Organization, strokes are the second leading cause of death globally, and the leading cause of acquired disability among adults. The road to recovery is often long and arduous, with traditional rehabilitation methods providing varying degrees of success.

The AI-powered trousers represent a paradigm shift in rehabilitation technology. As Julie puts it, “I really feel this is the breakthrough for stroke victims that has been much and long awaited for.” This sentiment echoes the sentiments of many in the medical community who have long sought more effective ways to aid stroke recovery.

How the Technology Works

The AI trousers are a marvel of modern engineering and medical science. They function by using a series of sensors and motors that work in tandem with the wearer’s movements. This technology is not just about physical support; it’s about enhancing the body’s natural ability to relearn movements. The AI component analyses the wearer’s gait, providing real-time adjustments to improve walking patterns, much like a physical therapist would.

This approach is grounded in the concept of neuroplasticity, the brain’s ability to reorganize itself by forming new neural connections. By assisting in the correct movement patterns, the trousers help the brain to ‘relearn’ walking, potentially speeding up the recovery process.

The Impact on Stroke Rehabilitation

The implications of this technology are vast. For stroke survivors, the journey to recovery can be filled with frustration and despair. Traditional rehabilitation methods can be slow and, at times, ineffective. The AI trousers offer a more dynamic and responsive form of therapy that could revolutionize how we approach stroke rehabilitation.

In a study conducted by the American Stroke Association, it was found that early and individualized rehabilitation can significantly improve outcomes for stroke survivors. The AI trousers align perfectly with this philosophy, offering a tailored rehabilitation experience that adapts to the individual’s needs.

Challenges and Future Prospects

Despite the promise, the road ahead for AI in medical rehabilitation is not without challenges. Cost and accessibility are significant concerns. Cutting-edge technology often comes with a high price tag, potentially putting it out of reach for many who could benefit from it.

Moreover, there’s the challenge of integrating such technology into existing healthcare systems. As noted by experts in healthcare technology, the adoption of new medical technologies often faces hurdles in terms of regulatory approval, practitioner training, and patient acceptance.

However, the future looks bright. As AI and robotics continue to advance, we can expect these technologies to become more affordable and widespread. The potential for AI to aid in various aspects of healthcare, from diagnosis to treatment and rehabilitation, is enormous.

Conclusion

Julie Lloyd’s story is just the beginning. As we stand on the cusp of a new era in medical technology, the possibilities are endless. The AI-powered trousers are more than just a piece of technology; they are a symbol of hope and a testament to human ingenuity. For stroke survivors around the world, this could be the dawn of a new day in rehabilitation, one where technology and human resilience come together to create new possibilities.

Continue Reading

Medical

AI-Powered Medical Database Aims to Revolutionize Doctor-Patient Interactions

Published

on

By

Artificial Intelligence (AI) is making inroads into various sectors, and healthcare is no exception. According to a recent NPR article, Dr. Michael Mansour of Massachusetts General Hospital is among the early adopters testing an AI-enhanced version of UpToDate, a widely-used medical database. This experimental version employs generative AI to provide doctors with more targeted information, aiming to streamline the diagnostic process.

Wolters Kluwer Health, the company behind UpToDate, is working on making the database more conversational, allowing doctors to maintain the context of their queries. While the technology is still in beta and has some kinks to work out, the potential is enormous. AI could not only assist in making accurate diagnoses but also free up doctors’ time, allowing them to focus more on patient care. As Dr. Marc Succi of Mass General Brigham aptly puts it, “AI won’t replace doctors, but doctors who use AI will replace doctors who do not.”

Continue Reading

Medical

A New way around Drug Resistant Tuberculosis

Published

on

By

Researchers at Purdue University have created a powerful compound that specifically tackles Tuberculosis, a leading killer worldwide.

The scientists came up with a series of inhibitors that destroy TB by targeting a protein necessary for the survival of the TB molecule.

Tuberculosis destabilizes the immunity of patients with the help of Protein Tyrosine Phosphates B (mPTPB). Their findings were published in the Journal of Medicinal Chemistry.

“The death toll from TB is particularly high because of drug-resistant strains,” said Zhong-Yin Zhang, distinguished professor and head of Purdue’s Department of Medicinal Chemistry and Molecular Pharmacology and director of Purdue Institute for Drug Discovery. “These inhibitors are part of a promising new approach to developing TB therapeutic agents with novel targets and mechanisms of action to help save more lives.”

Right now, doctors rely on antibiotic preparations to treat Tuberculosis. The problem is that many patients don’t complete their dose of antibiotics and this non-adherence leads to the development of drug resistant tuberculosis.

“We developed a platform to target mPTPB for novel anti-TB agents that builds on technologies we pioneered to modulate abnormal protein tyrosine phosphatase activity for the treatment of diseases such as cancer, diabetes and autoimmune disorders,” Zhang elaborated.

According to Zhang, the inhibitors’ have unique properties that make them incredibly useful. They have a lighter molecular weight and superior metabolic stability. They give scientists an excellent opportunity to create better treatments for Tuberculosis.

The visionary scientists are already working to patent the exciting new technology. The hunt is on for partners who will work with Purdue to further the development of the new technology. This is together with the Purdue Research Foundation Office of Technology Commercialization.

Continue Reading

Trending