Connect with us

Medical

Nurami Medical lands $6M making regenerative bandages for post-surgery recovery

Published

on

The Israeli MedTech company develops post-surgical application-tailored synthetic graft solutions to help protect the brain and accelerate patient recovery time…

Israeli MedTech startup Nurami Medical, which develops post-surgical soft-tissue healing solutions, announced a $6 million Series B funding round. The investment was led by Almeda Ventures, with participation from Leon Recanati’s private equity investment company, GlenRock.

Targeting FDA and CE approval

Nurami Medical‘s technology is based on biodegradable, synthetic nanofibers with sealing properties for improved soft tissue healing. The company has set out to revolutionize the regenerative medicine industry by providing both patients and physicians an effective application-tailored patch or surgical sealant solution. According to the company, in addition to its initial product offering – ArtiFascia – it is also lining up future projects for tissue regeneration solutions, which Nurami notes are part of a $20 billion market.

Regarding the ongoing clinical trials, co-founder Dr. Amir Bahar, a multidisciplinary entrepreneur and Nurami’s Clinical Director and Operations Manager said, “ArtiFascia’s clinical trial is being carried out at a number of European medical centers. This is a controlled, blind study, and as of yet, no adverse reactions have been documented.”

ArtiFascia is a patented, synthetic dural graft that protects the brain after neurosurgeries by boosting dura regeneration, while preventing cerebral-spinal fluid (CSF) leakage, to protect both the brain itself and central nervous system.

Nora Nseir Manassa, co-founder, co-CEO and CTO at Nurami adds, “Nurami is involved in ongoing efforts for the development of additional solutions for soft tissue repair and healing, for additional clinical indications, based on our technological platform which incorporates novel materials and unique manufacturing processes.”

Nurami Medical was founded in 2014 by uber-talented co-CEO and CTO Nora Nseir Manassa, COO Dr. Amir Bahar, and NGT3VC, a venture capital fund supporting early-stage life science startups. Previously, the company had raised $5 million from a number of Angel investors and the Israel Innovation Authority. The company relayed that the funding will be set towards completing clinical trials on ArtiFascia, and attaining both FDA and CE clearance. The clinical trial will test ArtiFascia in 90 patients, of which 13 have already been implanted with the ArtiFascia graft.

Continue Reading
Click to comment
Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments

Medical

A New way around Drug Resistant Tuberculosis

Published

on

By

Researchers at Purdue University have created a powerful compound that specifically tackles Tuberculosis, a leading killer worldwide.

The scientists came up with a series of inhibitors that destroy TB by targeting a protein necessary for the survival of the TB molecule.

Tuberculosis destabilizes the immunity of patients with the help of Protein Tyrosine Phosphates B (mPTPB). Their findings were published in the Journal of Medicinal Chemistry.

“The death toll from TB is particularly high because of drug-resistant strains,” said Zhong-Yin Zhang, distinguished professor and head of Purdue’s Department of Medicinal Chemistry and Molecular Pharmacology and director of Purdue Institute for Drug Discovery. “These inhibitors are part of a promising new approach to developing TB therapeutic agents with novel targets and mechanisms of action to help save more lives.”

Right now, doctors rely on antibiotic preparations to treat Tuberculosis. The problem is that many patients don’t complete their dose of antibiotics and this non-adherence leads to the development of drug resistant tuberculosis.

“We developed a platform to target mPTPB for novel anti-TB agents that builds on technologies we pioneered to modulate abnormal protein tyrosine phosphatase activity for the treatment of diseases such as cancer, diabetes and autoimmune disorders,” Zhang elaborated.

According to Zhang, the inhibitors’ have unique properties that make them incredibly useful. They have a lighter molecular weight and superior metabolic stability. They give scientists an excellent opportunity to create better treatments for Tuberculosis.

The visionary scientists are already working to patent the exciting new technology. The hunt is on for partners who will work with Purdue to further the development of the new technology. This is together with the Purdue Research Foundation Office of Technology Commercialization.

Continue Reading

Medical

A New Era Diagnosing Parkinson’s

Published

on

By

Scientists are on the verge of introducing a cheaper, faster, and completely painless test for Parkinson’s.

The researchers based at the University of Manchester said the new test which is already in sight, will herald a new era in diagnosing Parkinson’s disease.

A research paper published in the journal Nature Communications details the researchers’ findings that demonstrate hope in a new way of diagnosing Parkinson’s that is simple and painless – a skin swab.

The test examines compounds in the skin’s natural oil called sebum which is not the same in people who have Parkinson’s.  Sebum is a protective oily layer on human skin.

“We believe that our results are an extremely encouraging step towards tests that could be used to help diagnose and monitor Parkinson’s,” explained University of Manchester Prof Perdita Barran.

“Not only is the test quick, simple and painless but it should also be extremely cost-effective because it uses existing technology that is already widely available.

“We are now looking to take our findings forwards to refine the test to improve accuracy even further and to take steps towards making this a test that can be used in the NHS and to develop more precise diagnostics and better treatment for this debilitating condition.”

The team worked with 500 sebum samples. All of them were extracted from people’s upper backs. Some of the subjects had Parkinson’s and some did not.

The scientists used mass spectrometry to isolate 10 chemical compounds that become reduced or elevated when the person has Parkinson’s.

They could diagnose people with Parkinson’s with an accuracy of 85%.

Because Parkinson’s takes so long to progress, it can take years for people to visit a doctor because the symptoms don’t become noticeable for years.

Specialists use a DaTscan to see whether the brain is losing dopamine-producing brain cells. This means that a patient is developing Parkinson’s disease.

The trouble is that there are other, more rare neurological conditions that cause the same loss of dopamine-producing brain cells. This makes the Parkinson’s diagnoses more complicated.

Around a quarter of people living with Parkinson’s in the UK were misdiagnosed with something else first, according to a survey of more than 2,000 people living with Parkinson’s in the UK.

56-year-old Daxa Kalayci is a Leicester native who has known that she was living with Parkinson’s since her diagnosis in September 2019. In the four years before that that, Kalayci had been misdiagnosed several times over.

“This test could be a game-changer for people living with Parkinson’s and searching for answers, like I was,” she quipped.

“I am so happy with this news because it will mean that in future people won’t have to experience the anxiety of multiple appointments, long waiting times and sleepless nights.

“The sooner this test is available, the better. Anything that can help people looking for a diagnosis is a bonus.”

Continue Reading

Medical

Scientists will Soon spot Diseases and find exoplanets with super Tiny photonic devices

Published

on

By

Researchers working in Sweden have created a microcomb capable of detecting diseases faster and making optical communications systems more efficient, among other exciting applications.

The scientists at the Chalmers University of Technology in Sweden have built the photonic device (microcomb) with the capability to produce optical frequencies on a micro resonator – a minute optical cavity.

Effectively, the microcomb is like a ruler of light that measures frequencies with extreme accuracy.

The microcomb generates an array of optical frequencies whose colors are evenly distributed, making it more or less a ruler of light that measures and produces frequencies with extreme accuracy.

The researchers used a chip to develop a new microcomb based on two micro resonators instead of one. The interaction between the two micro resonators is similar to atoms that bind together to create a diatomic molecule known as a photonic molecule.

The microcomb is a device that is readable and capable of being tuned as well as being replicated into something multiple times more efficient than the best devices available at the moment.

The results are extremely significant. “The reason why the results are important is that they represent a unique combination of characteristics, in terms of efficiency, low-power operation and control, that are unprecedented in the field,” explained PhD candidate Óskar Bjarki Helgason.

This is by no means the first time that scientists have created a microcomb on a chip, but it is definitely the first time that scientists have deployed a second micro resonator to beat many of the limitations that have never been surmounted before.

The arrangement has created a number of unique characteristics. The microcomb is so small that it can sit on the tip of a human hair and leaves relatively wide gaps between its teeth.

These wide teeth mean that engineers and researchers have massive opportunities to explore the possibilities.

The microcomb is capable of making optical communication systems vastly more efficient by replacing many lasers with a single microcomb placed in data centers.

The microcombs have great potential for use in lidar to power self-driving vehicles where they can be deployed to record distances, or to calibrate spectrographs deployed in astronomical observations.

Microcombs are also ideal for making optical clocks more accurate as well as improving health monitoring apps in mobile phones, and increasing the accuracy of diagnostic tests that rely on analyzing exhaled air.

“For the technology to be practical and find its use outside the lab, we need to co-integrate additional elements with the micro resonators, such as lasers, modulators, and control electronics,” explained Dr Victor Torres-Company, who is in charge of the Ultrafast Photonics Laboratory at Chalmers University. “This is a huge challenge, that requires maybe five to 10 years and an investment in engineering research, but I am convinced that it will happen.

“The most interesting advances and applications are the ones that we have not even conceived of yet. This will likely be enabled by the possibility of having multiple microcombs on the same chip. What could we achieve with tens of microcombs that we cannot do with one?”

Continue Reading

Trending