The Texas University engineers have created a new kind of soil at Austin that pulls moisture from the atmosphere and distributing it to plant. Potentially the land has increased that can be farmed across the globe to formerly inhospitable areas and decrease water used in agriculture when droughts are growing.
ACS Materials Letters Journal has published the team’s details of the irrigation systems that draws in water from the air. Moisture absorbing gels capture atmospheric water. The gels release water after the soil has been heated to some temperature availing it to the plants. Some of the water that absorbs into the soil eventually finds its way back to the air, and humidity increases, and the cycle continues.
‘’Enabling free-standing agriculture in areas where it’s hard to build up irrigation and power systems is crucial to liberating crop farming from the complex water supply chain as resources become increasingly scarce,’’ Guihua Yu said, a materials science associate professor in the Mechanical Engineering, Walker Department.
Every soil gram can extract about 3-4g of water. It takes around 0.1-1kg of soil to water one square meter of farmland, depending on the crop.
Gels draw water into the soil during cooler nights in much humid periods and release the same moisture into the soil during the day.
Experiments were run by the team on the Cockrell School’s Engineering Teaching Centre Building on the roof to test the soil at UT Austin. The hydrogel soil retains more water than sandy soils from dry areas and needs less water to grow crops.
The team found out that the soil retained about 40% of the water amount it started during a 4-week experiment. Sandy soil still had only 20% water retained after a week.
The team had planted radishes in another experiment in both the soil types. Radishes survived for 14 days in the hydrogel soil without irrigation. They were only watered at the beginning to take hold. The radishes planted in sandy soil were watered for the first 4 days and then left without any irrigation. They lasted only two days.
‘’Most soil is good enough to support the growth of plants,’’ Fei Zhao said, a postdoctoral researcher from who led the study together with Panpan Zhang and Xingyi Zhou. ‘’It’s the water that is the main limitation, so that is why we wanted to develop a soil that can harvest water from the ambient air.’’
The first significant technology application the Yu’s group has worked on for over 2 years is water-harvesting soil. In 2019, the team innovated the use of hybrid materials made of gel and polymer, so called ‘super sponges’ that could extract large volumes of water from ambient air and clean it before releasing it. The technology was powered by solar energy.
The researchers have envisioned several other technology applications. Potentially it could be used to cool data centers, solar panels, and distribute drinking water to individual households or institutions.
This technology will enable nations to grow food on previously inhospitable land and feed a growing world population. There is already too much pressure on the available farmlands.
There is need to relieve pressure on the environment. Significant shifts in food consumption and land use are termed as necessary to hit 2050 goals by the UK. Many farmers in the UK are already making their farm operations more climate-neutral n 2035, with reports from several farmers that they are keen to achieve sustainability. Farmers in the UK grappling with the Covid-19 pandemic and the aftermath of Brexit have realized just how important it is to think differently.
When the Agriculture Bill was introduced by the UK government, brings with it rewards for farmers who tackle climate change and protect wildlife as an example of ‘public goods’ work. Considering that the UK is about to depart from the EU’s current subsidy system, It was necessary to have the new bill.
Genetic engineering has probably become a necessity because it is expected to help ensure global food security in the future. Several countries across the world are grappling with under nutrition and hunger alongside obesity. A third of the world population is undernourished in some way.
In the meantime, the University of Exeter researchers have estimated that 2 degrees Celsius global warming could lead to approximately 230 billion carbon tones released from the existing soil in the world.
The world’s soils contain at least double the carbon in the atmosphere, where increased temperatures heighten up decomposition, decreasing the time spent by carbon in the soil (which is known as ‘’soil carbon turnover’’).
The newest international research study published in the Nature Communications journal, led by Exeter University, discloses the soil carbon turnover sensitivity to global warming and eventually halves uncertainty in future climate change projections.
The projected 230 billion carbon let out at 2 degrees Celsius warming (which is higher than pre-industrial levels) could be higher than 4 times that of China’s total emissions and more than twice the USA’s emissions over the last century.
‘’Our study rules out the most extreme projections, but nonetheless suggests substantial soil carbon losses due to climate change at only 2 degrees Celsius warming and this doesn’t even include losses of deeper permafrost carbon,” co-author Dr. Sarah Chadburn, said from Exeter University.
The said effect on the world’s soil is known as ”positive feedback” – as climate change results in knock-on effects contributing to further change of climate.