Connect with us

Computers

What is the future for printing?

Published

on

From the humble printing press to 3D printers – this is an industry that has experienced big change. Even in a digital world, printing isn’t dead either. According to Quocirca’s Global Print 2025 study, 64% of businesses said they believe printing will remain important to their daily business even by 2025. So here’s what we can look forward to in the future.

It will become more environmentally friendly

Millions of trees are used for paper and millions of cartridges are sent to landfill each year – but that trend is being reversed. We can anticipate that printing will become much more environmentally friendly in the future to ensure it keeps up with the times. Whether that is only using recycled cartridges and paper or buying high-capacity XL ink cartridges which can last longer efficiency and green concerns will be at the forefront. 

Eco modes will be common in every model and will offer ever-greater eco-friendly performance.

The composition of ink has even been reconsidered to help it last as long as possible too. New formulae have been created to help reduce the ink drying up in the cartridge and it getting wasted.

3D printing will become more advanced

Printing has traditionally been a 2D affair – on paper, card, fabric and plastic. However, in recent times 3D printing has come into the mainstream spotlight. These use materials in place of ink or toner and formulate solid products.

The technology is now even being used to create organs.

  • Researchers at the University of Minnesota created a 3D printed prototype bionic eye and in the UK scientists have used stem cells to 3D print human corneas. 
  • The Netherlands have printed a tooth which can kill bacteria.
  • Switzerland has been successful in creating a 3D printed silicone heart. 

This is where there is room to grow, however. 3D printed organs will transform medicine and enhance people’s lives. Currently, the silicone heart can only beat up to 3,000 times (the average heart beats 80 times a minute, meaning the 3D printed organ will only last 37.5 minutes). While this is a short time, it’s progress. A foundation has now been set and the future will probably see fully-functioning organs coming off the printer.

Printing will become easier

Printing has already been made pretty easy. Once upon a time, it was impossible to print a document without your computer being tethered to it by a cable. Now printers have wi-fi capabilities meaning you can click print on your laptop, computer, mobile phone or tablet – regardless of whether you’re connected with a wire or not. Some printers even have the ability to print when you’re not near it. In fact, you could be out shopping and want to send something to the printer for when you get home via a designated email belonging to your printer. In the future, we may see this become the norm on all printers, making the whole process of printing quicker and easier – and taking the current cutting edge functions to the mainstream.

AI could be an everyday appearance

Artificial intelligence (AI) can play a huge part in the printing industry. In an office setting, for example, it could help to enhance security – with printed materials being scanned to auto approve entry to buildings or access to a printer restricted to employees with the correct permissions.

An ‘intelligent’ printer can also provide forecasts on when you can expect to run out of ink or toner, or when you may need the printer servicing – and your printer could even order more for you. 

Printing has already transformed and evolved so much and as technology also grows, we can expect printing to continue. From the humble printing press to being able to create a heart – printing is not dead yet.  

Continue Reading
Click to comment
Subscribe
Notify of
0 Comments
Inline Feedbacks
View all comments

Computers

Microsoft’s Copilot AI: Revolutionizing Windows 11 and the Future of Personal Computing

Published

on

By

In a groundbreaking move, Microsoft has officially launched its Copilot AI assistant for Windows 11, marking a significant milestone in the integration of artificial intelligence into everyday computing. This development represents a major shift in how users interact with their personal computers, potentially transforming productivity and user experience across millions of devices worldwide.

Copilot, which is now available directly from the Windows 11 taskbar, is designed to be a versatile and intelligent assistant that can help users with a wide range of tasks. From summarizing documents to generating images and answering complex questions, Copilot aims to make every user a power user by simplifying complex tasks and enhancing productivity.

The integration of Copilot into Windows 11 is not just an incremental update but a fundamental reimagining of how users interact with their operating system. According to Panos Panay, Microsoft’s head of Windows and devices, “Copilot makes every user a power user, helping you take action, customize your settings, and seamlessly connect across your favorite apps.” This statement underscores Microsoft’s vision of AI as an integral part of the computing experience, rather than just an add-on feature.

One of the most significant aspects of Copilot is its ability to operate across all apps and programs. Unlike previous AI assistants that were limited to specific applications, Copilot maintains a consistent presence through a sidebar that remains accessible regardless of what the user is doing. This ubiquity allows for seamless integration of AI assistance into virtually any task a user might be performing on their computer.

The capabilities of Copilot extend far beyond simple queries. Users can ask the AI to adjust system settings, explain complex concepts, or even assist with creative tasks like writing or image generation. This versatility is powered by the same technology that drives Bing Chat and ChatGPT, leveraging the advanced language models developed by OpenAI.

Moreover, Microsoft is opening up Copilot to third-party developers, allowing them to extend the functionality of the AI assistant through plugins. This move could potentially create a rich ecosystem of AI-powered tools and services, further enhancing the utility of Copilot for users across various domains.

The introduction of Copilot represents a significant step forward in Microsoft’s AI strategy. The company has been increasingly focused on integrating AI into its products, with CEO Satya Nadella emphasizing AI as a core part of Microsoft’s future. This aligns with broader industry trends, as noted by the National Artificial Intelligence Initiative, which highlights the growing importance of AI in driving innovation and economic growth.

However, the integration of such powerful AI capabilities into a widely used operating system also raises important questions about privacy, data security, and the potential for AI to influence user behavior. Microsoft has stated that it is committed to responsible AI development, but as with any new technology, there will likely be ongoing discussions about the ethical implications of AI assistants like Copilot.

From a user perspective, the introduction of Copilot could significantly change how people interact with their computers. Tasks that once required multiple steps or specialized knowledge might now be accomplished with a simple natural language request to the AI assistant. This could potentially democratize access to advanced computing capabilities, making complex tasks more accessible to a broader range of users.

The impact of Copilot is likely to be felt across various sectors. In education, for instance, students might use the AI to help with research or to explain difficult concepts. In business, professionals could leverage Copilot to streamline workflows and enhance productivity. Even in creative fields, the AI could serve as a brainstorming partner or assist with tasks like image editing or content creation.

It’s worth noting that Microsoft is not alone in this AI race. Other tech giants like Google and Apple are also investing heavily in AI technologies, each with their own approaches to integrating AI into their products and services. This competition is likely to drive further innovation in the field, potentially leading to even more advanced AI assistants in the future.

As Copilot rolls out to Windows 11 users, it will be interesting to observe how people adapt to and utilize this new AI assistant. Will it become an indispensable tool for productivity, or will users find it to be more of a novelty? The answer to this question could have significant implications for the future direction of personal computing and AI integration.

In conclusion, the launch of Microsoft’s Copilot AI assistant for Windows 11 marks a significant milestone in the evolution of personal computing. By bringing advanced AI capabilities directly into the operating system, Microsoft is betting on a future where AI is an integral part of how we interact with our devices. As this technology continues to evolve and mature, it has the potential to reshape not just how we use our computers, but how we work, create, and solve problems in the digital age.

The journey of AI integration into our daily computing lives is just beginning, and Copilot represents a bold step forward. As we move into this new era, it will be crucial to balance the incredible potential of AI with thoughtful consideration of its impacts on society, privacy, and human agency. The success of Copilot and similar AI assistants will ultimately be measured not just by their technical capabilities, but by how effectively they enhance and empower human creativity and productivity.

Continue Reading

Computers

Apple’s Vision Pro: A New Frontier for Developers in Spatial Computing

Published

on

By

Apple has taken a significant step towards the launch of its highly anticipated Vision Pro headset by releasing the visionOS software development kit (SDK) to developers. This move marks a crucial phase in the evolution of spatial computing, offering developers the tools to create innovative applications for the mixed reality platform.

The Vision Pro, announced at Apple’s Worldwide Developers Conference (WWDC) in June, represents the company’s bold entry into the rapidly growing augmented and mixed reality market. With the release of the visionOS SDK, Apple is inviting developers to explore the possibilities of this new computing paradigm, potentially revolutionizing how we interact with digital content in our physical spaces.

A New Era of App Development

The visionOS SDK provides developers with a comprehensive set of tools and frameworks to build apps specifically for the Vision Pro. This includes access to key features such as hand and eye tracking, spatial audio, and the ability to create immersive 3D environments. The SDK is designed to work seamlessly with existing Apple development tools like Xcode, making it easier for iOS and macOS developers to transition to this new platform.

One of the most exciting aspects of the SDK is its support for SwiftUI, Apple’s modern UI framework. This allows developers to create user interfaces that can adapt to the unique spatial environment of the Vision Pro. The Digital Crown, a familiar input method from the Apple Watch, has been reimagined for the Vision Pro, offering precise control in three-dimensional space.

Bridging the Physical and Digital Worlds

The Vision Pro’s mixed reality capabilities open up new possibilities for app experiences that blend digital content with the real world. Developers can create apps that place virtual objects in the user’s physical environment, allowing for intuitive interactions and novel use cases across various industries.

For instance, in the field of education, apps could provide immersive learning experiences, allowing students to explore historical sites or complex scientific concepts in 3D. In healthcare, medical professionals could use Vision Pro apps for advanced visualization of patient data or surgical planning.

Challenges and Opportunities

While the release of the SDK is a significant milestone, developers face several challenges in creating compelling experiences for the Vision Pro. The unique interface paradigms of spatial computing require rethinking traditional app design principles. Developers must consider factors such as user comfort, spatial awareness, and the integration of virtual elements with the physical world.

Moreover, the high-end positioning and expected price point of the Vision Pro may initially limit its user base. Developers will need to carefully consider their target audience and the potential return on investment when deciding to develop for this platform.

Industry Impact and Future Prospects

The introduction of the Vision Pro and visionOS could have far-reaching implications for various industries. In the business sector, spatial computing applications could transform remote collaboration, data visualization, and product design processes. The entertainment industry might see new forms of immersive content creation and consumption.

As 5G networks continue to expand, the potential for cloud-based spatial computing experiences grows, potentially allowing for more powerful and responsive applications on the Vision Pro.

Developer Resources and Support

To support developers in this new endeavor, Apple has provided extensive documentation, sample code, and design guidelines through its developer portal. The company is also offering developer labs and one-on-one consultations to assist in app creation and optimization for the Vision Pro.

Additionally, Apple has announced that existing iOS and iPadOS apps will be compatible with the Vision Pro, running in a 2D window within the spatial environment. This compatibility ensures a rich ecosystem of apps will be available at launch, while encouraging developers to create native visionOS experiences.

The Road Ahead

As developers begin to explore the capabilities of the visionOS SDK, the coming months will be crucial in shaping the app ecosystem for the Vision Pro. The success of the platform will largely depend on the creativity and innovation of the developer community in creating compelling spatial computing experiences.

The Vision Pro is set to launch in early 2024, giving developers several months to prepare their apps for the new platform. This timeline aligns with Apple’s typical product release cycle and allows for thorough testing and refinement of both the hardware and software.

Conclusion

The release of the visionOS SDK marks a significant milestone in the development of spatial computing. As developers begin to explore the possibilities of this new platform, we can expect to see innovative applications that challenge our current understanding of human-computer interaction.

While challenges remain, the potential for transformative experiences across various industries is immense. As we approach the launch of the Vision Pro, the tech world will be watching closely to see how this bold venture into mixed reality shapes the future of computing.

The coming months will be critical in determining whether Apple’s vision for spatial computing resonates with developers and consumers alike. As the lines between our physical and digital worlds continue to blur, the Vision Pro and visionOS may well be at the forefront of this technological revolution.

Continue Reading

Computers

Google’s Ambitious AI-Powered Robotics Project: A Seven-Year Journey to Revolutionize Everyday Tasks

Published

on

By

In an era where artificial intelligence is rapidly transforming various aspects of our lives, Google’s seven-year mission to develop AI-powered robots for everyday tasks stands out as a bold and visionary endeavor. This ambitious project, which began in 2016 and concluded in 2023, aimed to create intelligent machines capable of assisting humans in a wide range of daily activities.

The Everyday Robots project, led by Hans Peter Brondmo, sought to bridge the gap between advanced AI algorithms and physical robotics. The goal was to create versatile robots that could adapt to the unpredictable nature of real-world environments and perform tasks typically reserved for humans. This initiative aligned with the broader trend of AI integration in various industries, from manufacturing to healthcare.

One of the primary challenges faced by the Everyday Robots team was the complexity of real-world environments. Unlike controlled industrial settings, homes and offices present a myriad of variables that robots must navigate. This challenge is not unique to Google; many robotics companies struggle with creating machines that can operate effectively in diverse and dynamic settings.

To overcome these obstacles, the team employed innovative approaches to robot learning. They focused on two main strategies: reinforcement learning and imitation learning. Reinforcement learning involves robots learning through trial and error, while imitation learning allows robots to learn by observing human actions. These techniques are at the forefront of modern robotics research, promising to create more adaptable and intelligent machines.

A significant breakthrough in the project was the development of a system for massive data generation. To train their robots effectively, the team needed vast amounts of data representing various scenarios and tasks. They created an innovative solution that allowed them to generate a wealth of training information, a crucial step in developing AI systems that can generalize across different situations.

By 2022, the Everyday Robots project had made remarkable progress. The team had developed robots capable of performing a range of tasks, from sorting recycling to opening doors. These achievements demonstrated the potential of AI-powered robots to assist in everyday activities, aligning with the growing trend of service robotics in various sectors.

Brondmo, the project lead, emphasized the urgent need for robotic assistance in addressing pressing societal challenges. As populations age and labor shortages persist in certain sectors, AI-powered robots could play a crucial role in maintaining productivity and quality of life. This perspective aligns with broader discussions about the future of work and automation.

However, the closure of the Everyday Robots project in 2023 has raised concerns among industry insiders about the future of complex robotics projects. Some worry that the challenges faced by Google might discourage other companies from pursuing similar ambitious goals. This concern reflects the broader debate about the pace and direction of AI development in the tech industry.

The journey of the Everyday Robots project highlights the delicate balance between pushing technological boundaries and meeting immediate business needs. While the project made significant strides in advancing AI-powered robotics, it also faced the reality of corporate priorities and resource allocation. This tension is common in the tech industry, where long-term research projects often compete with short-term business goals.

Despite its conclusion, the Everyday Robots project has left a lasting impact on the field of robotics. The technologies and methodologies developed during this seven-year journey are likely to influence future robotics research and development. Many of the challenges addressed by the Google team, such as adaptability in diverse environments and learning from human demonstration, remain central to the advancement of robotics.

The project also raised important questions about the role of AI and robotics in society. As these technologies become more sophisticated, there is a growing need for ethical considerations and regulatory frameworks to guide their development and deployment. The experiences and insights gained from the Everyday Robots project could inform these crucial discussions.

Looking forward, the field of AI-powered robotics continues to evolve rapidly. While Google’s project may have concluded, other companies and research institutions are pushing forward with similar initiatives. The Boston Dynamics robots, for instance, demonstrate the ongoing progress in creating versatile, intelligent machines capable of complex tasks.

The lessons learned from Google’s Everyday Robots project will undoubtedly contribute to the next generation of AI-powered robots. As the technology continues to advance, we may yet see the realization of the project’s original vision: robots that can seamlessly assist humans in a wide range of everyday tasks.

In conclusion, Google’s seven-year mission to create AI-powered robots for everyday tasks represents a significant chapter in the ongoing story of robotics and artificial intelligence. While the project faced challenges and ultimately concluded, its contributions to the field are undeniable. As we move forward, the insights and technologies developed during this ambitious endeavor will likely play a crucial role in shaping the future of human-robot interaction and the integration of AI into our daily lives.

Continue Reading

Trending