Connect with us


Benefits Of Solar Pile Driving Systems



Renewable energy is currently a concern for people worldwide, given emerging new world problems like climate change that have led to perennial droughts, flooding in coastal areas, decreasing water sources, wildfires, and increasing desertification. Solar energy stands out as the perfect source of energy in the green world movement and many technological advancements have been made to facilitate solar power harnessing.

Drivers Of The Solar Boom

Solar companies have continued to experience rising demand for their products, with no end in sight for meeting this need. Solar energy devices like solar panels and water heaters have evolved from minimal use to become ubiquitous items, featuring on most modern rooftops. Various reasons have led  people to adopt solar energy for their homes, businesses, and firms.

A Cheap Source Of Power

Apart from installation costs, solar energy is free and readily available for a good part of the year in most places. Besides, the cost of solar panels has reduced over the years, making it affordable to more households. Price per watt costs about $3 as opposed to costs of $10 per watt about ten years back.

A Versatile Source Of Energy

Solar energy offers great versatility and can be harnessed for use in various ways:

Passive heating-This involves letting the sun’s heat freely work, for example, letting harvested cereals lay in the open for the sun’s heat to dry them.

Solar photovoltaic cells-They transform the sun’s light into electricity.

Thermal solar technology-The sun’s heat is used for heating water for home or industrial use.

Additionally, solar energy can power practically anything that runs on electricity, including water heaters, lighting appliances, machines, water pumps, and dehydrators.

How Do Solar Pile Driving Systems Work?

Solar pile drivers, make solar panel installation much easier and faster. They drive piles meant to offer support for solar racks and panels deep into the ground with accuracy and speed, allowing solar installation projects to be completed within reasonable time frames.

Pile drivers are versatile, with an ability to bury piles under the ground even in rugged terrain, including steep inclinations, wetlands, and rocky ground. Pile drivers use diesel, steam, and hydraulics in their functions

Advantages Of Solar Pile Driving

Solar farms are the biggest beneficiaries of solar pile driving technology due to their massive installations that traditionally took much longer to achieve. Solar pile drivers offer a myriad of benefits including.

Speed Up Pile Driving

Modern approaches have slowly replaced conventional methods of pile driving. While past installations involved site surveys, time-wasting excavations, and stringing to achieve linear uniformity,  today, the process is greatly automated, enabling multiple piles to be placed in short periods.

Saves Costs

Pile driving systems save a lot of costs, from simplified processes and quick pile driving.  Their ability to bury piles in their hundreds as compared to a few dozen using old systems enables modern pile drivers to reap from the benefits of economies of scale and offer lower prices.

No Site Clean Up Requirements

Unlike past projects that require site cleaning after the job, solar pile drivers greatly eliminate the need for cleaning as there is no excavation. This means that other more important things can take up the place of site cleaning.

Saves Manpower

Conventional methods of solar pile installation are not only time consuming but are also labor-intensive. With the need for extra hands eliminated, work can proceed with minimal labor costs. This also ensures uniformity, which is hard to achieve where there is a large workforce.

Accurate Placement of Piles

Solar pile driving systems have significantly improved in their accuracy levels as a result of the incorporation of software and GPS technology that work hand in hand to place piles following the specifications provided.

Can Be Hired Or Leased

With the ever-rising demand for solar installations, owning a pile driving system is a sure way to generate income. These machines can be hired or leased to solar technicians at a premium and are a perfect investment for companies or individuals looking to expand their income streams.

Continue Reading
Click to comment
Notify of
Inline Feedbacks
View all comments


Neural network and digital camera used to detect soil moisture




Researchers have created a new way to check soil moisture with a normal digital camera and a synthetic neural network.

The United Nations predicts that by 2050 some parts of the world will not have the fresh water they need to sustain agriculture. This means that we urgently need to adopt more efficient methods of soil irrigation to alleviate the coming crisis.

According to the researchers from the University of South Australia, the techniques currently in use for detecting soil moisture are contributing to the problem.

The sensors they bury in the soil are affected by salts and this calls for specially designed hardware to facilitate the connections.

At the same time, the thermal imaging cameras necessary for the operations cost too much and are sensitive to too much clouds, sunlight, and fog.

“The system we trialed is simple, robust and affordable, making it promising technology to support precision agriculture,” explained researcher Dr Ali Al-Naji referring to his newly innovated solution based on machine learning. “It is based on a standard video camera which analyses the differences in soil color to determine moisture content. We tested it at different distances, times and illumination levels, and the system was very accurate.”

They connect the camera to an artificial neural network that is already trained to identify a range of moisture levels under a variety of sky conditions.

They can train the monitoring system on the network to precisely identify soil conditions regardless of the location. This makes it a customizable solution that each user can adapt to their climatic conditions and make it as accurate as possible.

“Once the network has been trained it should be possible to achieve controlled irrigation by maintaining the appearance of the soil at the desired state,” Professor Javaan Chahl added. “Now that we know the monitoring method is accurate, we are planning to design a cost-effective smart-irrigation system based on our algorithm using a microcontroller, USB camera and water pump that can work with different types of soils.

“This system holds promise as a tool for improved irrigation technologies in agriculture in terms of cost, availability and accuracy under changing climatic conditions.”

Continue Reading


Lowering Carbon Emissions in Cement Manufacturing




For the most part, concrete is the stuff that man-made structures are made of. Cement is an essential ingredient in the making of concrete, but most people have no idea that 8% of the carbon dioxide we produce globally is in the production of cement.

Cement manufacturing generates massive amounts of carbon dioxide. It is such a massive carbon dioxide producer that this one industry produces more carbon dioxide than all other countries except for the US and China.

Global cement production is expected to grow from the present four billion tons a year to five billion tons a year within the coming three decades, according to Watchdog Chatham House.

Cement factory emissions mostly come from fossil fuels burned to produce heat to facilitate cement formation. This includes the chemical processes that convert limestone to clinker within kilns, after which the kiln is ground and combined with other ingredients that form cement.

The construction industry resists change.  Safety concerns, issues of reliability are not necessarily always compatible with reducing the carbon footprint of the industry.

The Global Cement and Concrete Association in 2018 launched a set of Sustainability Guidelines for the industry that sets standards for key measurements like emissions and water usage with a view to improve transparency and encourage improvement.

At the same time, experts are pursuing lower-carbon processes for manufacturing cement. A New Jersey startup for example is working on a chemical process that reduces the carbon dioxide produced in cement manufacturing by 30%.

Solidia which is based in Piscataway, N.J., uses a larger quantity of clay and less limestone than the typical cement making process. The company also uses less heat, which reduces its reliance on carbon fuel.

Another startup, CarbonCure based in Dartmouth, Nova Scotia, harnesses carbon dioxide from other chemical processes using a process of mineralization. It turns a potential by product from a hazard.

A Montreal company CarbiCrete has opted to create concrete without any cement at all. They use steel slag, a steel manufacturing by product to replace cement.

Norwegian cement producer Norcem wants to create the first zero-emissions cement manufacturing plant in the world. Norcem is currently using alternative fuels harnessed from industrial waste and now wants to invest in carbon capture as well as storage methods that completely eliminate emissions.

Researchers are also researching with bacteria that absorb atmospheric carbon dioxide in concrete formulations and thus create a better and more environmentally friendly concrete.

Multiple startups including N.C.s BioMason are experimenting with ‘live’ building materials. BioMason works with bacteria and aggregate particles to grow bricks a lot like cement.

Researchers based at the University of Colorado Boulder have published their research with cyanobacteria, micro-organisms which they use to build a concrete alternative.

By inoculating a scaffold of sand and hydrogel with bacteria, they created brocks that are capable of healing cracks.

Even though these replacement concrete bricks cannot replace the many uses of concrete, they can be used in place of concrete for things like facades, pavers, and other structures that don’t bear heavy loads.

Continue Reading


Farming Could be Transformed by Self-Watering Soil




The Texas University engineers have created a new kind of soil at Austin that pulls moisture from the atmosphere and distributing it to plant. Potentially the land has increased that can be farmed across the globe to formerly inhospitable areas and decrease water used in agriculture when droughts are growing.

ACS Materials Letters Journal has published the team’s details of the irrigation systems that draws in water from the air. Moisture absorbing gels capture atmospheric water. The gels release water after the soil has been heated to some temperature availing it to the plants. Some of the water that absorbs into the soil eventually finds its way back to the air, and humidity increases, and the cycle continues.

‘’Enabling free-standing agriculture in areas where it’s hard to build up irrigation and power systems is crucial to liberating crop farming from the complex water supply chain as resources become increasingly scarce,’’ Guihua Yu said, a materials science associate professor in the Mechanical Engineering, Walker Department.

Every soil gram can extract about 3-4g of water. It takes around 0.1-1kg of soil to water one square meter of farmland, depending on the crop.

Gels draw water into the soil during cooler nights in much humid periods and release the same moisture into the soil during the day.

Experiments were run by the team on the Cockrell School’s Engineering Teaching Centre Building on the roof to test the soil at UT Austin. The hydrogel soil retains more water than sandy soils from dry areas and needs less water to grow crops.

The team found out that the soil retained about 40% of the water amount it started during a 4-week experiment. Sandy soil still had only 20% water retained after a week.

The team had planted radishes in another experiment in both the soil types. Radishes survived for 14 days in the hydrogel soil without irrigation. They were only watered at the beginning to take hold. The radishes planted in sandy soil were watered for the first 4 days and then left without any irrigation. They lasted only two days.

‘’Most soil is good enough to support the growth of plants,’’ Fei Zhao said, a postdoctoral researcher from who led the study together with Panpan Zhang and Xingyi Zhou. ‘’It’s the water that is the main limitation, so that is why we wanted to develop a soil that can harvest water from the ambient air.’’

The first significant technology application the Yu’s group has worked on for over 2 years is water-harvesting soil. In 2019, the team innovated the use of hybrid materials made of gel and polymer, so called ‘super sponges’ that could extract large volumes of water from ambient air and clean it before releasing it. The technology was powered by solar energy.

The researchers have envisioned several other technology applications. Potentially it could be used to cool data centers, solar panels, and distribute drinking water to individual households or institutions.

This technology will enable nations to grow food on previously inhospitable land and feed a growing world population. There is already too much pressure on the available farmlands.

There is need to relieve pressure on the environment. Significant shifts in food consumption and land use are termed as necessary to hit 2050 goals by the UK. Many farmers in the UK are already making their farm operations more climate-neutral n 2035, with reports from several farmers that they are keen to achieve sustainability. Farmers in the UK grappling with the Covid-19 pandemic and the aftermath of Brexit have realized just how important it is to think differently.

When the Agriculture Bill was introduced by the UK government, brings with it rewards for farmers who tackle climate change and protect wildlife as an example of ‘public goods’ work. Considering that the UK is about to depart from the EU’s current subsidy system, It was necessary to have the new bill.

Genetic engineering has probably become a necessity because it is expected to help ensure global food security in the future. Several countries across the world are grappling with under nutrition and hunger alongside obesity. A third of the world population is undernourished in some way.

In the meantime, the University of Exeter researchers have estimated that 2 degrees Celsius global warming could lead to approximately 230 billion carbon tones released from the existing soil in the world.

The world’s soils contain at least double the carbon in the atmosphere, where increased temperatures heighten up decomposition, decreasing the time spent by carbon in the soil (which is known as ‘’soil carbon turnover’’).

The newest international research study published in the Nature Communications journal, led by Exeter University, discloses the soil carbon turnover sensitivity to global warming and eventually halves uncertainty in future climate change projections.

The projected 230 billion carbon let out at 2 degrees Celsius warming (which is higher than pre-industrial levels) could be higher than 4 times that of China’s total emissions and more than twice the USA’s emissions over the last century.

‘’Our study rules out the most extreme projections, but nonetheless suggests substantial soil carbon losses due to climate change at only 2 degrees Celsius warming and this doesn’t even include losses of deeper permafrost carbon,” co-author Dr. Sarah Chadburn, said from Exeter University.

The said effect on the world’s soil is known as ”positive feedback” – as climate change results in knock-on effects contributing to further change of climate.

Continue Reading


Copyright © 2020 HiTECH